
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2000; 33: 767–788

High-order ILU preconditioners for CFD problems

Andrew Chapmana,*, Yousef Saadb and Larry Wigtonc

a Minnesota Supercomputer Institute, Uni6ersity of Minnesota, Minneapolis, MN, U.S.A.
b Department of Computer Science, Uni6ersity of Minnesota, Minneapolis, MN, U.S.A.

c Boeing Commercial Airplane Group, PO Box 3707, Seattle, WA, U.S.A.

SUMMARY

This paper tests a number of incomplete lower–upper (ILU)-type preconditioners for solving indefinite
linear systems, which arise from complex applications such as computational fluid dynamics (CFD). Both
point and block preconditioners are considered. The paper focuses on ILU factorization that can be
computed with high accuracy by allowing liberal amounts of fill-in. A number of strategies for enhancing
the stability of the factorizations are examined. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: block LU; dropping strategies; incomplete LU; Krylov sub-space methods; precondition-
ing

1. INTRODUCTION

Direct methods for solving large linear systems that result from the discretization of fluid flow
problems often have prohibitive memory requirements. Although it is commonly accepted that
iterative methods are required for such cases, it is also known that these methods are not as
robust as direct solvers. A middle-ground strategy used to improve the robustness of iterative
solvers is to precondition the original linear system with an accurate preconditioner. A
preconditioning operation consists of some auxiliary process, which solves a system with A
approximately. This process is then combined with accelerators such as Generalized Minimal
RESidual (GMRES) or Biconjugate Gradient Stabilized (BiCGSTAB). The preconditioner can
be a direct solver associated with a nearby matrix, or a few steps of an iterative technique
involving A.

Preconditioning is critical in making iterative solvers practically useful. In fact, the choice of
the preconditioning is far more important than that of the accelerator. When applied to
common problems in computational fluid dynamics (CFD), standard preconditioners are not
too well understood, or even founded, theoretically. They have for the most part been
developed for the restricted class of M-matrices, but are often successfully used for indefinite

* Correspondence to: NEC Systems Incorporated, 4200 Research Forest c400, The Woodlands, TX 77381, U.S.A.

Copyright © 2000 John Wiley & Sons, Ltd.
Recei6ed 12 April 1996

Re6ised 15 September 1999



A. CHAPMAN, Y. SAAD, AND L. WIGTON768

problems as well. Among the most popular preconditioners are those developed by extracting
an approximate factorization. These are based on simple heuristics and the behavior of the
resulting iterations are difficult to analyse. At the heart of the difficulty is the fact that often
an approximation of the form

A:LU

is computed with some accuracy, but not much is known of the resulting matrix M=LU,
which is used at each step of the preconditioned method. When A is ill conditioned, as is often
the case, then it is very common that M is even more ill conditioned than A. In fact, the
forward and backward solves, i.e., the solves associated with L and U respectively, may be
‘unstable’; a term used to mean that the recurrences that they generate will grow exponentially.
In this situation, preconditioning the system with M may have the effect of making it harder
to solve rather than easier.

It is difficult to study the existence and stability of incomplete lower–upper (ILU) factoriza-
tions for general matrices, and even more difficult to study ILU preconditioned iterative
solvers for these matrices. It is not well understood, for example, why block techniques work
typically better than point techniques. Nor is it clear whether or not increasing accuracy in the
LU factorization can be useful. In fact, often more accuracy is detrimental. Diagonal
compensation of perturbation can help convergence, but it is not clear whether this is due to
an improvement of stability or accuracy. Preconditioners based on pattern only (level-of-fill
techniques) work rather well even for indefinite problems, although this is not supported by
theory.

The goal of this paper is to examine a few of these facts, some of which are well known to
practitioners, with the help of experiments using matrices from CFD problems. This focus is
on high-order point and block ILU preconditioners as they are used in solving the systems of
equations that arise from CFD problems. It is also shown that block Symmetric Successive
Over-relaxation (SSOR) preconditioning and deflation can be effective in some cases where
ILU preconditioning fails.

2. THE POINT PRECONDITIONERS: ILU(k), ILUT, ILUD

There are a number of variations of the well-known ILU factorization scheme. These consist
of factoring A such that A=LU−E, where E is the error matrix. It is known that for most
of the standard ILU factorizations, −E represents the matrix of fill-ins, which are discarded
during the factorization process [1, p. 274]. The matrices L and U are sparse lower triangular
and upper triangular respectively, and often generated by a variant of the Gaussian elimination
process, to which is added a ‘dropping strategy’, i.e., a rule used to discard fill-ins. The
different ILU techniques differ in these dropping strategies. The corresponding sub-routines
are discussed briefly below. Also discussed are pivoting and block versions of the sub-routines.
For more details on these algorithms and their theory see Reference [1].

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



ILU-TYPE PRECONDITIONERS FOR CFD PROBLEMS 769

ILU(k) is a preconditioner based on a dropping strategy that uses the concept of ‘level-of-fill’
[2,3]. When k=0, the standard ILU factorization with no fill-in results. In ILU(0), the factors
L and U have the same pattern as the lower and upper parts of A respectively, and each
non-zero element in A is equal to the element of the product LU in the same location. The
term level-of-fill is defined by induction: an entry in the ILU factors has a level-of-fill of k+1
if at least one of the parent entries in the row operations that produced it has a level-of-fill of
k. Entries in the original matrix are defined to have a level-of-fill of zero. The preconditioner
ILU(k) retains entries with level-of-fill up to and including k. The higher the value of k, the
larger the number of entries that are retained.

ILUT uses a dual truncation dropping strategy developed in Reference [4]. This is controlled
by two parameters, a threshold drop tolerance, tol, and a fill number l fil. All entries with a
magnitude less than tol multiplied by the norm of the current row are dropped, and only the
largest l fil entries in each row of the L and U factors are retained. It is usual when testing with
this preconditioner to set tol to a fixed value, typically tol=10−4, and vary l fil to produce the
desired fill-in.

ILUD uses threshold dropping and diagonal compensation. All entries with a magnitude less
than tol multiplied by the norm of the current row are dropped. A multiple a of the sum of
the dropped entries for each row is added to the diagonal entry of U for that row. This is often
referred to as modified ILU (MILU) [1].

ILUTP and ILUDP are the same as ILUT and ILUD respectively, but add threshold column
pivoting. Here two columns are permuted when �a(i, j )� + pivthresh\ �a(i, i )�, where pivthresh
is the pivot threshold.

Of the above methods ILU(k) is the fastest to compute the factors L and U for moderate
values of k. The level-of-fill pattern can be obtained efficiently in a symbolic factorization
routine, and after the symbolic factorization, the number of non-zero entries in the ILU factors
is known. ILU(k) is also the simplest to use as there is only one parameter, the level-of-fill k.
The ILUT routine may give a more accurate factorization, because it takes account of the
magnitude of the entries dropped. The parameter l fil controls the number of entries in the
ILU factors, so there is a limit to the size of the ILU factors. The dropping strategy used in
ILUD is the simplest one. However, there is no way of predicting the size of the resulting ILU
factors. It is not uncommon that the storage required by ILUD may be prohibitive, possibly
close to that of a direct solver. No one of these preconditioners has been shown to be the best
for all matrices. In practice, finding the best preconditioner for a given problem, or class of
matrices associated with a problem, involves extensive testing. It is assumed here that for a
given class of matrices arising from the same physical problem, the preconditioners will behave
similarly.

It is often the case that ILU factors with larger numbers of entries will lead to more accurate
factorizations, and to better preconditioners [5]. This is not always the case however. A
common failure of ILU factorizations is ‘instability’, a term that is often used to mean that the
norm of (LU)−1 can be extremely large. This is caused by long recurrences that grow
exponentially in the forward and backward triangular solutions associated with L and U. In
such situations, the accelerator will generally fail on the preconditioned system, which may

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



A. CHAPMAN, Y. SAAD, AND L. WIGTON770

well have a condition number that is much worse than that of the unpreconditioned system.
An easily calculated indicator of instability of the ILU factors is the infinity norm condition
estimate (LU)−1e�, where e is the vector of all ones [6,7].

Another factor that affects iterative solver performance is the initial guess and the right-
hand side. In this work the right-hand side is a vector with pseudo-random values between
zero and one, and the initial guess is a vector of all zeros. One exception is the matrix
BBMAT. It is supplied with a right-hand side and this is used in place of a pseudo-random
right-hand side. It is sometimes convenient to construct the right-hand side artificially, though
this may lead to an easier problem than the original one. One version of this is to calculate the
right-hand side equal to the product of the matrix and a vector of all ones. The initial guess
is then set to be a vector with random values between 0 and 1. Examples are given comparing
random and constructed right-hand sides.

3. BLOCK PRECONDITIONERS

Matrices with a block structure arise naturally in CFD problems, when there is more than one
unknown at each physical node. This structure can be exploited in block ILU preconditioners,
where Gaussian elimination is performed in terms of blocks, i.e., small dense sub-matrices. For
these preconditioners row operations are replaced by block row operations, and when
calculating the multiple of one block row to add to another, the inverse of the diagonal block
is used in place of the inverse of the diagonal entry. Block preconditioners can be faster to
construct than point preconditioners, depending on how the diagonal blocks are inverted and
on the speed-up that can be achieved by performing operations with blocks (BLAS3) versus
scalars (BLAS1).

There are two main attractions of block preconditioners. First, there are obvious savings in
storage, which arise from the leaner data structure associated with block storage schemes.
Second, a strong coupling exists within the equations and unknowns of an individual block,
and when dropping terms from the matrix experience shows that it is more effective to drop
complete blocks rather than individual entries from the blocks. If one considers accuracy only
in the ILU factorization, this may seem to be unnecessary, i.e., criteria based on magnitude
may seem to be sufficient. However, block factorizations seem better behaved numerically in
that they tend to be more stable.

3.1. Block ILU(k)

One important issue when considering block factorizations is to define dropping strategies that
can be applied to the block structure. The ILU(k) strategy is the easiest to generalize. Indeed,
assuming the block size is p, the only change is that the pattern to be considered to define the
level-of-fill for each block is the one associated with the block matrix, which is of size n/p.
Note that any of the point preconditioners defined above can also be applied to a block
matrix. If the zero elements within each non-zero block are treated as non-zero elements, then
it is known that the point version of ILU(k) will give rise to the same factorization as the block
version. In this situation, it is clearly advantageous to use a block version that requires less
work and memory.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



ILU-TYPE PRECONDITIONERS FOR CFD PROBLEMS 771

3.2. Block ILUT and block ILUD

A block ILUT or ILUD strategy can also be defined. Instead of considering the magnitude of
an individual entry to be dropped in a given block, some norm of the block is used. A block
is dropped if its norm is small enough. In this paper, the Frobenius norm is used as it is one
of the simplest to compute. In the rest of this paper, the block variants of the point
preconditioners described earlier will be denoted by preceding them with the letter B. Thus,
BILU(k) and BILUT are the block variants of ILU(k) and ILUT respectively.

3.3. In6ersion of diagonal blocks

The performance of block preconditioners can often be enhanced by a careful approximate
inversion of the diagonal blocks. Often these blocks tend to be nearly singular and it is useful
to perturb the diagonal blocks slightly in order to reduce the risk of instability and improve the
quality of the incomplete factors. One way of doing this is to use the singular value
decomposition (SVD), see, for example, Reference [8]. If B is a diagonal block to be inverted,
the strategy is to replace the smallest singular values by larger quantities. For example, let the
SVD of B be

B=VSU

where S is the diagonal matrix of singular values s1]s2] · · · ]sn. Then, before inverting B,
any singular value that is less than es1 is replaced by es1, where e is a tolerance factor, see,
for example, Reference [7]. This has the effect of perturbing the matrix B by a matrix whose
2-norm is equal to es1, so the norm of the perturbation is of order e when measured relative
to the norm of B.

4. OTHER TECHNIQUES

A simpler alternative to the methods presented in the previous sections consists of constructing
banded LU factors, which discard elements outside of a certain band about the main diagonal.
This is referred to as Band ILU. This technique may be attractive for matrices that have a clear
banded structure and will be tested in some of the experiments. A similar method is to drop
all entries that are outside consecutive diagonal blocks of (the same) predetermined size. This
gives rise to block diagonal preconditioning (BDP). The diagonal blocks are decoupled and for
small block size it is efficient to invert them using a dense matrix techniques like LU
decomposition.

The block SSOR (BSSOR) preconditioning refers to a standard block extension of SSOR,
see, for example, Reference [1]. This method uses the same inverted diagonal blocks as the
BDP method mentioned above, but it also uses information from off-diagonal blocks. All these
preconditioners have in common the use of more information from matrix blocks close to the
diagonal, and less (or no) information from blocks far from the diagonal.

Two methods that have been used to try to enhance the performance of preconditioners are
(1) diagonal scaling and (2) diagonal shifting. Diagonal scaling consists of scaling all the rows

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



A. CHAPMAN, Y. SAAD, AND L. WIGTON772

of the matrix and then scaling all the columns (or the same operations done in reverse order).
For some matrices this can significantly improve the performance of the iterative solver, while
for others it leads to worse performances. It was argued in Reference [9] that if scaling results
in a deterioration of the degree of normality of the matrix, measured by the number
AAT−ATA/AAT, this will result in worse performances. Examples are given where
scaling improves and hinders performance. Diagonal shifting consists of adding a constant to
the diagonal entries to make the matrix more diagonally dominant prior to computing its ILU
factors. The difficulty here is that it is not easy to determine the best shift.

Finally, deflation techniques can sometimes be quite effective in enhancing the convergence
of standard accelerators such as GMRES. In deflation, eigenvectors corresponding to the
smallest eigenvalues of the preconditioned matrix are estimated as GMRES progresses. Then
they are added to the Krylov sub-space with the effect of reducing strongly the residual
components associated with the smallest eigenvalues. For further discussion of deflation see
References [10,11].

5. NUMERICAL TESTS

The numerical experiments are grouped by sets of matrices.1 We start our experiments with
Harwell–Boeing and FIDAP matrices using only point preconditioners. In the tests, the
accelerator is GMRES, with a Krylov sub-space size of 50. Results are given in terms of the
number of GMRES steps (i.e. matrix–vector multiplications) to reduce the residual norm by
10−8. If there is no convergence by 1200 steps, the reduction in the residual norm achieved in
1200 steps is shown instead.

Also shown is the total number of non-zeros in the ILU factors, referred to as ILUnnz. This
number provides a good indicator of the cost of each preconditioning operation. Indeed the
number of multiplications for a forward solve followed by a backward solve is proportional to
ILUnnz. For large values of l fil, computing the factorization and applying the preconditioner
at each step may be the most expensive operations. However, the motivation for precondition-
ing methods is that the number of steps required to converge may be so much lower relative
to no preconditioning, or diagonal preconditioning say, that the overall process becomes more
cost-effective. As an example, in Table III, the ILUD preconditioner used for the problem
Sherman2 in test 3, uses about a half the storage of the ILU(k) preconditioner, but requires
about ten times as many iterations to converge. In this case, ILU(k) clearly wins. Note that a
factorization that requires more memory will not necessarily lead to fewer iterations needed to
converge. Regarding the cost of the ILU factorization itself, it depends on the method
used—but the cost is generally superlinear relative to k in ILU(k) and l fil in ILUT. Note that
in many of the tests, perhaps most, the cost of the factorization was lower that half the cost
of the overall iteration process. In addition, the cost of the factorization can often be
amortized when there are several linear systems to be solved with the same matrix, as often

1 Most of the matrices referred to in this paper are accessible via the internet. See the web pages at http://
math.nist.gov/MatrixMarket

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



ILU-TYPE PRECONDITIONERS FOR CFD PROBLEMS 773

occurs in the solution of non-linear systems of equations, such as those that arise in CFD
applications.

5.1. Tests with Harwell–Boeing matrices

The Harwell–Boeing matrices that are used in the tests range in size from 1080 to 5005. A
brief description of each matrix is given in Table I, where n is the dimension of the matrix and
nnz is the number of non-zeros.

Point versions of the five preconditioners described in Section 2 were tested on these
matrices. Three tests were carried out for each preconditioner. For ILU(k), these tests
correspond to values of level-of-fill k=0, 1, 2. For the other preconditioners, parameters were
varied with the aim of producing the same fill-in as for ILU(k). The parameter tol in ILUT
and ILUTP and the parameter a in ILUD and ILUDP were fixed at 0.0001 and 0.1
respectively. The values of other parameter are given in Table II. For the pivoting routines
ILUTP and ILUDP, the threshold pivot tolerance pivtol was set to 0.1.

Results of the tests are given in Table III. The first line for each test, labeled (step)conv,
gives, in parenthesis, the number of GMRES steps to reduce the residual norm by 10−8, or,
without parenthesis, the reduction in residual norm in 1200 GMRES steps. The second line for
each test, labeled ILUnnz, gives the number of non-zeros in the incomplete L and U factors.

The performance of the preconditioners can be compared by looking at the number of
GMRES steps to converge for similar ILUnnz. It can be seen that ILUTP has worse
convergence results than ILUT, and ILUDP has better convergence results than ILUD. No

Table I. Harwell–Boeing matrices.

n DescriptionMatrix nnz

SAYLR4 3564 22 316 Oil reservoir modeling
9613 Oil reservoir modeling1224PORES2

ORSREG1 2205 14 133 Oil reservoir modeling
Thermal simulation, steam injection23 0941080SHERMAN2

20 0335005 Black oil, IMPES simulationSHERMAN3
20 793 Fully implicit black oil simulator3312SHERMAN5

Table II. Harwell–Boeing matrices, point preconditioner parameters.

Matrix ILUT, ILUTP l fil ILUD, ILUDP tol

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

5 7 0.00025 0.0002475 0.000245SAYLR4 3
PORES2 6 10 14 0.01 0.001 0.0001
ORSREG1 3 5 7 0.002 0.0004 0.00008
SHERMAN2 0.0000050.000050.000520 2218

5SHERMAN3 3 0.0250.050.17
7SHERMAN5 13 0.01 0.00310 0.0009

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



A. CHAPMAN, Y. SAAD, AND L. WIGTON774

Table III. Harwell–Boeing matrices, point ILU preconditioners.

Matrix ILUD ILUT ILUDP ILUTP ILU(k)

(60)(step)convTest 1SAYLR4 (118) (70) (118) (70)
ILUnnz 12354 21177 12354 21172 22316

(54)(56)(85)(56)(85)(step)convTest 2
ILUnnz 39544 35382 39544 35382 38738

Test 3 (step)conv (42) (51) (42) (50) (50)
6347649496728724949672872ILUnnz

PORES2 Test 1 (step)conv 0.9E+0 (32) 0.9E+0 (31) (48)
ILUnnz 8428 12846 96138637 12941

Test 2 (step)conv 0.1E+1 (15) 0.1E+1 (22) (21)
239182406023107ILUnnz 24043 18953

Test 3 (step)conv 0.9E+0 (12) (17)(62) (16)
3382933366476133341251790ILUnnz

Test 1 (step)conv (20) (62)(43) (20) (43)ORSREG1
ILUnnz 14053 12704 1413314053 12699

Test 2 (step)conv (11) (16) (11) (16) (17)
21385 20802 21385 20802ILUnnz 24853

Test 3 (step)conv (7) (16)(11) (7) (11)
ILUnnz 33663 30413 4143733663 30413

SHERMAN2 Test 1 (step)conv 0.1E+1 (145) 0.5E+01 0.1E+1 (45)
1630318881ILUnnz 67488 22310 23094

Test 2 (step)conv (350) (25) (27)0.1E+00 (102)
4246338515630373240224728ILUnnz

Test 3 (step)conv (76) (12) (7)0.1E+00 (78)
ILUnnz 35990 35389 6833683702 42286

SHERMAN3 Test 1 (step)conv (77) (216) (77) (218) (233)
1885119835ILUnnz 19835 18850 20033

Test 2 (step)conv (36) (96) (36) (96) (149)
3294330070264993007026499ILUnnz

Test 3 (step)conv (32) (46) (32) (46) (50)
ILUnnz 32039 41124 32039 41124 52157

(36) (30) (36)Test 1 (31) (36)SHERMAN5 (step)conv
ILUnnz 29594 21824 29662 21851 20793

(24)(24)(25)(24)(25)(step)convTest 2
ILUnnz 48942 30921 3746148824 30921

Test 3 (step)conv (17) (21) (19)(17) (21)
ILUnnz 82744 39229 82744 39229 63943

preconditioner is the best for all matrices, and in general they give similar results for similar
ILUnnz. In all cases convergence improves as ILUnnz increases, and except for the case of
PORES2 and ILUD preconditioning, convergence is achieved for large enough ILUnnz. For

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



ILU-TYPE PRECONDITIONERS FOR CFD PROBLEMS 775

the Harwel–Boeing matrices the general advice would be to use ILU(0), as it is faster than the
other preconditioners, and the size of the incomplete L and U factors is known.

From Table III it can be noted that in the case of the matrix SAYLR4 and the
preconditioner ILUD, the amount of fill-in is sensitive to the parameter tol. Small changes in
tol, from 0.00025 to 0.0002475, produce large changes in ILUnnz, from 12 354 to 39 544. This
is undesirable behavior, and it shows that it is difficult to achieve the desired fill-in for ILUD
preconditioning by adjusting tol.

The infinity norm condition estimate (LU)−1e� has values of the order of 104, 10, 10−1,
104, 1010, 101 in tests for the matrices SAYLR4, PORES2, ORSREG1, SHERMAN2,
SHERMAN3, and SHERMAN5 respectively. This indicates stable factorization in all tests.

Table IV shows the effect of row then column scaling for the case of ILU(0) precondition-
ing. Here, the 2-norms are used, so that row-scaling divides each row of the matrix by its
2-norm and similarly, column scaling divides each column by its 2-norm. Columns 2 and 3 in
the table give the number of iterations to converge without and with scaling, and columns 4
and 5 give the number AAT−ATA/AAT, a measure of the degree of normality of the
matrix. It can be seen that scaling improves performance, except for the case of the symmetric
matrix SAYLR4 (with AAT−ATA/AAT=0). Here scaling destroys symmetry and leads
to worse performances. It is also interesting to note that with the exception of SHERMAN3,
this improvement seems to correlate with the degree of normality as measured above. Scaling
was found to not produce any significant changes in other tests for this report, so the problems
were not scaled, as this makes the result easier to reproduce.

It was mentioned in Section 2 that the random right-hand side is used in all tests, and that
a constructed right-hand side leads to an easier problem. This is confirmed by the results in the
last column of Table III, which give the number of GMRES steps to converge for a random
right-hand side with ILU(0) preconditioning. The number of steps is 60, 48, 62, 44, 233, and
36 for the matrices SAYLR4, PORES2, . . . , SHERMAN5 respectively. For the same test with
a constructed right-hand side, the numbers of steps to converge is 43, 39, 39, 14, 113, and 32.
The reason that a random right-hand side is used is because it is thought to be more
representative of real problems.

The Harwell–Boeing matrices are included in this report as a base case, to show that
GMRES and point ILU preconditioning works well on these matrices, and their behavior is
stable and predictable. Scaling usually improves convergence, but if it leads to the matrix

Table IV. Convergence and degree of normality for systems with and without scaling.

AAT−ATA/AATStepMatrix

With scaling Without scalingWithout scaling With scaling

SAYLR4 (60) (84) 0 0.077
PORES2 (48) (41) 1.4 0.65

0.0770.40(62)(62)ORSREG1
SHERMAN2 (44) (12) 1.4 0.92
SHERMAN3 0.0610.00000033(2)(233)

0.201.3(31)(36)SHERMAN5

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



A. CHAPMAN, Y. SAAD, AND L. WIGTON776

becoming more non-normal, it can lead to worse performance. The right-hand side and initial
guess play a part in determining the performance of GMRES.

5.2. Tests with the FIDAP matrices

A collection of matrices has been gathered from test problems used in the finite element
package FIDAP. They are listed in Table V. Linear systems associated with these matrices are
often more difficult to solve than the Harwell–Boeing matrices. It can be noted that for their
size, n=656–2203, the FIDAP matrices have a relatively large number of entries per row,
24–42. The matrix ex3.mat is symmetric and the others are non-symmetric.

The tests on the FIDAP matrices are similar to those for the Harwell–Boeing matrices.
Three tests were carried out for each matrix, and for ILU(k) these correspond to level-of-fill
values k=5, 10, 15. The parameters for the other preconditioners were adjusted to produce
similar fill-in, and they are given in Table VI. The pivot tolerance for ILUTP and ILUDP was
set to 0.1, and the factor a in ILUD and ILUDP was set to 1.0.

Table VII gives results for the FIDAP matrices. The first line for each test gives the number
of GMRES steps for the residual norm calculated in GMRES to reduce by more than 10−8.
A maximum of 1200 GMRES steps was allowed. The second line gives the true reduction in
residual norm, b−Ax/a−Ax0. If the residual norm calculated in GMRES is correct, this
number is less than 10−8, and any number larger than 10−8 indicates instability or round-off
error in GMRES. The third line of each test gives the number on non-zero entries in the
incomplete LU factors. The last line gives the infinity norm condition estimate (LU)−1e�.
Where (LU)−1e� is greater than 1020, no attempt was made to solve, and this is indicated
by the symbol † in the first two lines of each test.

The first thing to notice with the FIDAP tests is the high value of the level-of-fill required
for ILU(k) to coverage. Also notice that the preconditioners are in general unstable with

Table V. FIDAP matrices.

DescriptionnnznMatrix

2D flow past a cylinder in freestream52 6851821ex3.mat
69 981 2D attenuation of a surface disturbanceex20.mat 2203
19 144 2D growth of a drop from a nozzleex21.mat 656

2D crystal growth simulation40 782974ex27.mat

Table VI. Preconditioner parameters for FIDAP matrices.

ILUDILUT ILU(k)

tol l filtol l fil

Test 1 10−6 40 10−4 5
1010−66010−7Test 2

Test 3 10−8 80 10−8 15

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



ILU-TYPE PRECONDITIONERS FOR CFD PROBLEMS 777

Table VII. FIDAP matrices, point ILU preconditioners.

ILUT ILUDP ILUTPMatrix ILU(k)ILUD

(1201) †ex3.mat Test 1 (step) (1201) (1201)†
0.1E+01†0.9E+00†conv 0.8E+00

127 767 139 219ILUnnz 150 489 111 846 220 657
0.8E+04 NaN(LU)−1e� 0.2E+06 0.2+221 0.6E+03

†(1201) (1201)(1201)Test 2 (step) (1201)
0.8E+00 †conv 0.8E−03 0.1E+01 0.9E+00

179 359139 749187 597141 285ILUnnz 160 719
0.1E+13 0.2E+05 NaN 0.1E+03(LU)−1e� 0.4E+05

† (17)(16)(13)Test 3 (step) (14)
0.8E−07 0.4E−05 †conv 0.5E−030.9E−07

188 287 147 557ILUnnz 172 985 160 613 186 699
0.5E+030.2+1460.5E+03 0.4E+03(LU)−1e� 0.4E+03

(1201) (1201) † (147)ex20.mat Test 1 (step) (1201)
0.7E−04 †conv 0.5E+00 0.1E+01 0.7E−08

293 831386 122 170 316168 948ILUnnz 253 072
0.8E+10 0.5E+82(LU)−1e� 0.1E+09 0.3E+100.4E+10
(7) †Test 2 (step) (12) (94) (28)

†0.3E−09 0.2E−110.1E−06conv 0.2E−08
442 258 252 878ILUnnz 327 042 242 585 341 633

0.6E+090.3E+210.2E+090.1E+09(LU)−1e� 0.3E+11
(74) (4) (74) (28)Test 3 (step) (4)

0.2E−110.9E−080.1E−090.5E−06conv 0.3E−09
463 065 322 146ILUnnz 337 873 290 948 341 633
0.3E+09 0.2E+10(LU)−1e� 0.3E+09 0.5E+09 0.6E+09

(1200) (1201) (24)(1201)ex21.mat Test 1 (step) (1201)
0.1E+01 0.6E−00 0.1E+01 0.1E−07conv 0.5E+00

83 054 48 619ILUnnz 49 235 46 379 69 030
0.2E+090.9E+08 0.2E+160.6E+09(LU)−1e� 0.7E+08

(12) (145)Test 2 (step) (21) (36)(161)
0.5E−08 0.2E−07conv 0.3E−08 0.3E−03 0.7E−08

66 94193 244 72 64860 605ILUnnz 70 611
0.3E+09 0.3E+10(LU)−1e� 0.9E+08 0.5E+09 0.1E+10

(36)(18)(5)(16)Test 3 (step) (6)
0.3E−03. 0.1E−08 0.2E−08 0.7E−08conv 0.4E−09

80 370 72 64895 47268 697ILUnnz 72 208
0.1E+11 0.1E+10 0.1E+10 0.1E+10(LU)−1e� 0.2E+10

(16) (583)ex27.mat Test 1 (step) (245) (247)†
0.9E−08 0.4E−010.4E−07†conv 0.7E−08

68 070 94 971 66 823 136 842ILUnnz 71 987
0.2E+07 0.4E+11(LU)−1e� 0.2E+08 0.5E+26 0.8E+11

(26)(4) (14)(88)Test 2 (step) (23)
0.5E−08 0.3E−09conv 0.4E−08 0.4E−06 0.1E−08

126 952 95 856ILUnnz 107 212 97 865 139 863
0.3E+070.2E+07 0.5E+080.8E+08(LU)−1e� 0.2E+07
(8) (26)Test 3 (step) (12) (65) (3)

0.3E−090.1E−080.6E−110.1E−06conv 0.4E−09
117 581 142 885 121 472 139 863ILUnnz 126 787
0.6E+07 0.2E+07 0.2E+07 0.5E+08(LU)−1e� 0.2E+07

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



A. CHAPMAN, Y. SAAD, AND L. WIGTON778

respect to ILUnnz. For example, for matrix ex3.mat with ILUT preconditioning, moving from
test 2 to test 3, there is a relatively small (14%) increase in ILUnnz from 141 285 to 160 613,
and this results in a problem for which there is no convergence in 1200 iterations, converging
in just 13 iterations.

The incorrect calculation of the residual norm in GMRES is evident in the result for the
matrix EX3.mat with ILU(15) preconditioning (test 3). GMRES terminates after 17 steps when
the reduction in residual norm is only 0.5E−0.3. This test was repeated in real + 16 arithmetic,
and GMRES terminated after 20 steps with a true reduction in residual norm of 0.23×10−10.

The tests show that the FIDAP matrices are examples of CFD matrices that are difficult to
solve. The ILU preconditioners require a high level-of-fill to be effective, and preconditioner
performance is unstable with respect of ILUnnz. There are also round-off errors that lead to
incorrect calculation of the residual norm in GMRES.

5.3. Test with the BARTH matrices

The matrices BARTHT1A, BARTHT2A, BARTHS1A, and BARTHS2A were supplied by
Tim Barth of NASA Ames. They are for a two-dimensional high-Reynolds number airfoil
problem, with a one-equation turbulence model. The 1A and 2A matrices are for distance-1
and distance-2 neighbor finite volume models respectively. The S and T matrices are for two
different grids. The T matrices grid has a concentration of elements unrealistically close to the
airfoil. They are more difficult to solve than the S matrices, which have a more realistic grid.
The matrices have a 5×5 block structure. Two rows in each block are for the momentum
equations, and one row each is for the mass balance, the energy balance, and the turbulence
model. The blocks contain some zero entries but there are no zeros on the matrix diagonal.
The main interest is in solving the distance-2 matrix problems with a preconditioner con-
structed from the distance-1 matrices. Results are also given for solving the distance-1 problem
with a distnace-1 preconditioner, and the distance-2 problem with a distance-2 preconditioner.
Table VIII gives the dimension of the matrices (n), the number of non-zeros (nnz), and the
number of non-zero blocks (nnzb). Figure 1 shows the non-zero patterns of the BARTHT
matrices. The patterns for the BARTHS matrices are similar.

Table IX gives results for ILU(k) preconditioning with the preconditioner constructed from
the distance-1 matrix. Columns 2–4 are for regular ILU(k) preconditioning. Columns 5–7 are
for the case where the zero entries in blocks are counted as part of the non-zero pattern. This
is referred to as padding. The infinity norm condition estimate (LU)−1e� is less than 109 for
all the tests.

Table X gives results for solving the same problem using ILUT preconditioning and only
considering the easiest matrix BARTHS1A. Tables XI and XII are for the block precondi-
tioners BILU(k) and BILUT. Note that ILUnnzb in Tables XI and XII is the number of
non-zero blocks in the ILU factors, and not the number of entries. If the ILUnnzb numbers
in Table XI are multiplied by 25, the result is the same as the ILUnnz numbers in the last three
columns of Table IX.

To understand the results in Tables IX, X, XI and XII, consider first the level-of-fill routines
ILU(k) and BILU(k). ILU(k) gives similar results whether or not the blocks are padded.
ILU(k) with padded blocks gives virtually identical results to BILU(k). This is to be expected,

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



ILU-TYPE PRECONDITIONERS FOR CFD PROBLEMS 779

Table VIII. BARTH matrices.

n nnz nnzbMatrix Description

14 075 439 628 19 245 Small aerofoil 2D N-S with turb, high Re, distance-1BARTHT1A
15 735 498 620BARTHS1A 21 569 Small aerofoil 2D N-S with turb, high Re, distance-1
14 075 955 868 52 469 Small aerofoil 2D N-S with turb, high Re, distance-2BARTHT2A
15 735 1 105 164 60 413BARTHS2A Small aerofoil 2D N-S with turb, high Re, distance-2

Figure 1. Non-zero pattern for BARTH T matrices.

Table IX. ILU(k) preconditioner constructed from distance-1 matrix.

No padding of blocks Padded blocksMartrix

k=0 k=1 k=2 k=0 k=1 k=2

(step)conv (95) (43) (32)BARTHT1A (95) (43) (32)
ILUunz 439 628 628 460 921 404 481 125 659 825 958 775
(step)conv 0.3E−1BARTHS1A (49) (36) 0.3E−1 (49) (36)
ILUunz 498 620 732 097 1 073 471 539 225 761 925 1 111 325

BARTHT2A (step)conv (450) (194) (123) (556) (194) (123)
ILUunz 439 628 628 460 921 404 481 125 659 825 958 775
(step)conv 0.9E−1 (185) (128)BARTHS2A 0.8E−1 (183) (129)
ILUunz 498 620 732 097 1 073 471 539 225 761 925 1 111 325

Table X. ILUT preconditioner constructed from distance-1 matrix.

l fil=10 l fil=20 l fil=30 l fil=40Matrix

Conv 0.1E+1 0.1E+1BARTHT1A 0.1E+1 0.1E+1
ILUunz 268 846 536 923 804 695 1 072 450
(LU−1)e� 0.2E+14 0.2E+15 0.8E+14 0.7E+11

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



A. CHAPMAN, Y. SAAD, AND L. WIGTON780

Table XI. BILU(k) preconditioner constructed from distance-1 matrix.

k=0Matrix k=1 k=2

(step)conv (94) (42)BARTHT1A (31)
ILUunzb 19 245 26 393 38 351
(step)conv 0.3E−1BARTHS1A (48) (35)
ILUunzb 21 569 30 477 44 453
(step)conv (545)BARTHT2A (190) (120)
ILUunzb 19 245 26 393 38 351
(step)conv 0.7E−1BARTHS2A (176) (121)
ILUunzb 21 569 30 477 44 453

Table XII. BILUT preconditioner constructed from distance-1 matrix.

l fil=0 l fil=1 l fil=2 l fil=3 l fil=4Matrix l fil=5

(step)conv 1.0E−0 (895) (291)BARTHT1A (139) (90) (70)
ILUunzb 2815 5629 11 132 16 460 21 659 26 995
(step)conv 1.0E+0 0.9E+0 0.8E−1BARTHS1A (290) (195) (141)
ILUunzb 3147 6286 12 434 18 312 23 999 29 946
(step)conv 1.0E+0 1.0E+0 1.0E+0 (928)BARTHT2A (473) (371)
ILUunzb 2815 5629 11 132 16 460 21 659 26 995
(step)conv 1.0E+0 1.0E+0BARTHS2A 1.0E+0 1.0E+0 (597) (337)
ILUunzb 3147 6286 12 434 18 312 23 999 29 946

as the underlying preconditioners are the same in exact arithmetic. For the threshold
preconditioners, the block version BILUT gives better results than the point version ILUT.
Level-of-fill preconditioners for both point and block implementations perform better than
threshold preconditioners.

Tables XIII and XIV give results for BILU(k) and BILUT preconditioners constructed from
the distance-2 matrices. For similar fill-in, BILU(k) works better than BILUT. Figure 1 shows
the non-zero pattern for BILU(0), and Figure 2 for BILU(10), which has similar ILUnnzb.
Comparing the patterns shows that BILUT(10) does not have much of the outer band, which
corresponds to distance-2 interaction in the finite volume formulation, and it has some vertical
lines in the pattern. The matrix was column scaled, row scaled, and row and column scaled but
this did not change the non-zero pattern or the convergence results.

Table XIII. BILU(k) preconditioner constructed from distance-2 matrix.

Matrix k=0 k=1 k=2

BARTHT2A (Step) (62) (33) (23)
152 42994 27752 469ILUnnzb

(32)BARTHS2A (73)(Step) (23)
60 413 110 603 175 203ILUnnzb

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



ILU-TYPE PRECONDITIONERS FOR CFD PROBLEMS 781

Table XIV. BILUT preconditioner constructed from distance-2 matrix.

l fil=0 l fil=2Matrix l fil=4 l fil=6 l fil=8

(step)conv 1.0E+0 1.0E+0 (661)BARTHT2A (714) (537)
ILUnnzb 2815 11 185 22 082 32 921 43 620
(LU)−1e� 0.7E+6 0.6E+7 0.8E+8 0.7E+8 0.2E+9

BARTHS2A (step)conv 1.0E+0 1.0E+0 1.0E+0 0.9E+0 1.0E+0
ILUnnzb 3147 12 460 24 495 36 443 48 280
(LU)−1e� 0.1E+7 0.3E+8 0.2E+9 0.6E+9 0.2E+10

l fil=10 l fil=12 l fil=14 l fil=16 l fil=18
(step)conv (489) (681)BARTHT2A 0.1E+0 0.1E+0 0.1E+0
ILUnnzb 54 218 64 600 74 983 85 298 95 695
(LU)−1e� 0.2E+9 0.2E+9 0.2E+9 0.3E+9 0.2E+9
(step)conv 1.0E+0 1.0E+0BARTHS2A 1.0E+0 1.0E+0 1.0E+0
ILUnnzb 60 078 71 769 83 585 95 261 106 880
(LU)−1e� 0.2E+10 0.5E+10 0.1E+11 0.3E+11 0.7E+11

Figure 2. Non-zero pattern for BILUT(10) factors.

To try to resolve the problem, another drop scheme was tried. This used the same dual
truncation strategy as BILUT, but keeps all blocks in the non-zero pattern of the original
matrix. Results are given in Table XV. The new drop strategy gives a fill-in pattern similar to
that for BILU(k), and the convergence is also similar.

It can be concluded that the threshold dropping method is not suitable for the BARTH
matrices, and that it is beneficial to keep all entries in the L and U factors that correspond to
the ILU(0) pattern. An observation is that as the number of entries or blocks per row in the
ILU factors gets larger, the more the drop strategy has to decide what to keep and what to
drop, and the better the level-of-fill strategy compared with the threshold strategy. Thus, for
the level 1 matrices, with an average of 31 entries or six blocks per row, the point

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



A. CHAPMAN, Y. SAAD, AND L. WIGTON782

Table XV. BILUT preconditioner with modified drop strategy constructed
from the distance-2 matrix.

l fil=0 l fil=2Matrix l fil=4 l fil=6 l fil=8

(step) (62) (37)BARTHT2A (35) (35) (33)
ILUnnzb 52 469 63 277 73 923 84 371 94 611
(step) (73) (34) (30) (30) (28)BARTHS2A
ILUnnzb 60 413 72 320 84 114 95 826 107 462

preconditioner ILU(k) is clearly better than ILUT, and there is less advantage in using the
block preconditioner BILU(k) compared with BILUT. For the level 2 matrices, with an
average of 20 blocks per row, the advantage of the block preconditioner BILU(k) over BILUT
is clear. As an aside, note that Table XIV gives examples where increasing ILUnnzb does not
produce better convergence.

5.4. Test with the SIMON matrices

The matrix WIGTO966 is from a Euler equation model. The RAEFSKY, VENKAT, and
BBMAT matrices were supplied by Horst Simon. These are all CFD matrices. A brief
description is given for each matrix in Table XVI. The columns n, nnz, and blk are for
dimension, number of non-zero entries, and block size.

Table XVII has results for solving the matrices using ILU sub-routines. The tests labeled 1,
2, and 3 in the table are for level-of-fill in ILU(k) is equal to 0, 1, 2, and the parameters for
the other preconditioners were adjusted to produce similar ILUnnzb. The RAEFSKY and
VENKAT matrices all converge with ILU(0) preconditioning, and they will be discussed no
further. For the matrices WIGT0966 and BBMAT, the condition number estimate
(LU)−1e� is high, and the next paragraphs discuss techniques to produce factorizations
with lower condition number.

Table XVI. Simon matrices.

DescriptionblknnznMatrix

— Incompressible flow in pressure driven pipe3242 294 276RAEFSKY1
8 Fluid structure interaction turbulence problemRAEFSKY3 21 200 1 488 768

RAEFSKY5 168 658 6 Landing hydrofoil airplane FSE model6316
Unstructured 2D Euler solver, V. Venkatakrishnan NASA462 424 1 717 729VENKAT01
time step=0

1 717 729 Unstructured 2D Euler solver, V. Venkatakrishnan NASA462 424VENKAT25
time step=25

1 717 72962 424 Unstructured 2D Euler solver, V. Venkatakrishnan NASAVENKAT50 4
time step=50
Euler equation model3864 238 252 4WIGTO966

BBMAT 38 744 1 771 722 4 Beam+Bailey 2D airfoil exact Jacobian

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



ILU-TYPE PRECONDITIONERS FOR CFD PROBLEMS 783

Table XVII. Simon matrices, point ILU preconditioners.

Matrix ILUD ILUT ILUDP ILUTP ILU(k)

Test 1 (step)conv (49) (18) (40) (19) (36)RAEFSKY1
ILUnnz 200 940 313 912 190 317 315 977 293 409

Test 1 (step)conv (18) (5) (19)RAEFSKY5 (5) (5)
ILUnnz 153 172 166 398 153 337 172 637 167 178

Test 1 (step)conv † (36) † (36) (186)RAEFSKY3
ILUnnz 1 270 282 1 287 349 21 199 1 313 105 1 488 768

Test 1 (step)conv † (20) †VENKAT01 (20) (21)
ILUnnz 1 719 187 1 867 216 1 646 406 1 867 216 1 717 792

Test 1 (step)conv † (256) †VENKAT25 (253) (290)
ILUnnz 1 711 638 1 867 236 2 038 123 1 867 251 1 717 763

Test 1 (step)conv † (348) †VENKAT50 (350) (445)
ILUnnz 1 514 585 1 867 274 1 760 756 1 867 277 1 717 777

WIGTO966 Test 1 (step)conv 0.1E+1 † 0.1E+01 0.1E+1 0.1E+1
ILUnnz 230 525 223 400 238 111 224 673 238 252
(LU)−1e� 0.18E+16 0.11E+47 0.6E+19 0.60E+09 0.22E+18

Test 2 (step)conv 0.1E+1 † 0.1E+01 (783) 0.1E+1
ILUnnz 434 205 443 407 526 883 445 614 418 661
(LU)−1e� 0.11E+17 0.52E+28 0.5E+11 0.23E+08 0.25E+19

Test 3 (step)conv 0.1E+1 0.1E+1 0.1E+01 (200) 0.1E+1
ILUnnz 639 513 659 983 670 239 662 823 631 759
(LU)−1e� 0.2E+10 0.6E+18 0.4E+06 0.2E+06 0.5E+11

Test 1 (step)conv 0.1E+1 † †BBMAT † †
ILUnnz 1 696 203 1 907 963 1 909 688 1 932 579 1 771 722
(LU)−1e� 0.1E+17 0.4E+106 0.1D+94 0.3E+390 0.3E+50

One method used in ILU preconditioning to lower the condition number estimate
(LU)−1e� is to perturb the diagonal blocks. Table XVIII gives results for BILU(k)
preconditioning, with SVD used to invert and perturb diagonal blocks (as shown in Section 3).
The value of the SVD threshold is the value by which the diagonal is perturbed, and the
column for SVD threshold equal to 10−14 can be considered as regular BILU(k). The column
for SVD threshold of 10−1 is for large perturbation. In all tests as the perturbation increases,
the condition number estimate (LU)−1e� decreases. For BARTHT1A and BARTHT2A,
this hinders convergence. For WIGT0966, it improves convergence. For BBMAT, the factor-
ization becomes more stable, indicated by (LU)−1e� decreasing, but this does not lead to
convergence. Note that for the matrix BBMAT with regular BILU(k) preconditioning (SVD
threshold=10−14), the condition number estimate (LU)−1e�=0.2×1014 in Table XVIII is
much lower than the condition number estimate (LU)−1e�=0.3×1050 in Table XVII for
the same matrix but with ILU(k) preconditioning. This is because the 4×4 blocks in BBMAT
contain a large number of zero entries, which are in the BILU(0) pattern, but not in the ILU(0)
pattern. Multiplying ILUnnzb in Table XVIII by 16 gives ILUnnz=3 344 096 for BILU(0) as

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



A. CHAPMAN, Y. SAAD, AND L. WIGTON784

Table XVIII. Diagonal perturbation with BILU(0).

SVD thresholdMatrix

10−14 10−6 10−4 10−1

(its)convBARTHT1A (94) (97) 1.0E+0 1.0E+0
(LU)−1e� 0.11E+08 0.11E+08 0.51E+07 0.14E+05
(its)conv (545) (449) 1.0E+01BARTHT2A 1.0E+01
(LU)−1e� 0.11E+08 0.11E+08 0.51E+07 0.14E+05
(its)conv 0.7E+00 0.7E+00 0.7E+00WIGTO966 (50)
(LU)−1e� 0.15E+09 0.15E+09 0.14E+08 0.72E+05

BBMAT (its)conv 0.7E+02 0.7E+02 0.1E+01 0.1E+01
(LU)−1e� 0.24E+14 0.17E+12 0.28E+05 0.19E+03
ILUnnzb 209 006 209 006 209 006 209 006

compared with 1 771 722 for ILU(0). This can be contrasted with the BARTH matrices,
where blocks contain fewer zeros, as can be seen when comparing ILUnnz=498 620 to
ILUnnz=539 225 in Table IX for ILU(0) with and without padded blocks respectively.

Another change that can be made to ILU preconditioners to reduce (LU)−1e� is the
Band ILU preconditioner described in Section 4, which drops all entries in the original
matrix that are outside of a band. Also of interest are the block diagonal and block SSOR
preconditioners mentioned in the same section. The matrix can be made more diagonally
dominant by increasing the absolute value of the diagonal entries. This changes the matrix,
and it is done for the purpose of calculating the preconditioner only.

The decision on which modifications to use for BBMAT is guided by observing its
non-zero pattern. This is shown in Figure 3 for the complete matrix, and for 250×250 and
36×36 sub-matrices. From the figure it can be seen that BBMAT has a small block size of
4, and a large block size of 232. There are two bands above the diagonal band, and two
bands below. The number of entries separating bands is 232.

Experiments on BBMAT with banded ILU show that for band size small enough to
exclude contributions from the off-diagonal bands (this is band size 5228), the condition
number estimate (LU)−1e� has values less than 104, and convergence stalls at about 600
GMRES steps, with a reduction in residual norm of 0.016. Convergence was similar for a
range of bandwidths from 16 to 288. For a bandwidth of 232, which includes entries from
the first off-diagonal band, the condition number estimate (LU)−1e� is 0.2×1024. Thus,
including off-diagonal bands in calculating the ILU preconditioner results in unacceptably
high condition number.

Block diagonal and BSSOR were tried using dense matrix LU to invert the diagonal
block of size 4, 8, 12, and 16. The BSSOR relaxation parameter was set to 0.5, and a
single BSSOR step was used. Convergence stalled at about 200 GMRES iterations. The

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



ILU-TYPE PRECONDITIONERS FOR CFD PROBLEMS 785

Figure 3. Non-zero pattern for BBMAT.

best convergence was a reduction in residual norm of 0.015 for BSSOR with block size 16. The
condition number (LU)−1e� for BSSOR preconditioning was less than 104.

Block diagonal and block SSOR were tried with large block size (232 or 464), using ILUTP
to invert the diagonal blocks. Here convergence stalled at about 600 GMRES steps, with a
reduction in residual norm of 0.016. The tests using block size and ILUTP are slower that
those for small block size and dense LU. Tests with increasing the diagonal dominance for
BSSOR resulted in a reduced condition number estimator (LU)−1e�, but worse
convergence.

For problems where GMRES stalls, a remedy that sometimes works is deflation. Here
eigenvectors of the preconditioned matrix are estimated as GMRES proceeds, and they are
added to the Krylov sub-space. Deflation was tried with the preconditioners above, adding

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



A. CHAPMAN, Y. SAAD, AND L. WIGTON786

four estimated eigenvectors to the Krylov sub-space (which has a total size of 50). The best
results were obtained for the BSSOR preconditioning, using dense matrix techniques to invert
the diagonal blocks. Convergence results are given in Table XIX, and convergence history for
BSSOR with block size 16 is shown in Figure 4. The improved performance for the larger
block size does not justify the increased memory required, so for BBMAT the best precondi-
tioner with deflation is BSSOR with block size 16.

The cost of adding deflation to the GMRES process is negligible. At each outer GMRES
iteration, the eigenvalues of an m×m generalized eigenvalue problem are computed. Though
this represents an O(m3) calculation, m is usually very small relative to the size of the matrix.
Typically, only a small number of eigenvectors (say 4 or 8) are added. For a total number of
basis vectors of m, of which p are approximate eigenvectors, the only additional significant
cost arises from the need to store p additional vectors in the intermediate calculations. As a
result, it may be a good idea to always incorporate some form of deflation with a small
number of vectors. This is best done by checking convergence and the accuracy of the
underlying eigenvectors. It is often observed that the process does not improve if the
eigenvector approximations are poor.

Table XIX. Dense BSSOR with deflation for BBMAT.

(LU)−1e� Reduction inBlock size Time C90 s Number
residualiterations

702 2400 0.19×10−60.50×10216
744 2400 0.48×10−30.11×10332

0.24×10−724007120.14×10348
64 2400 0.17×10−70.16×103 837

116 0.30×103 696 2400 0.15×10−7

11970.42×103232 0.91×10−82023

Figure 4. Convergence history for solving BBMAT using BSSOR and deflation.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



ILU-TYPE PRECONDITIONERS FOR CFD PROBLEMS 787

6. CONCLUSION

In the numerical tests section of this report, point and block preconditioners with level-of-fill,
threshold, and diagonal compensation dropping strategies were tried. No one preconditioner
was the best for all matrices. Roughly speaking, it was found that preconditioners gave similar
performance for a similar amount of fill-in.

In an ILU factorization scheme the factors L and U are generated such that A=LU−E,
where E represents the matrix of fill-ins that are discarded during the factorization process.
The aim to make LU as accurate a representation of A as possible, and this is to be achieved
with as few non-zero entries as possible. It is also important that (LU)−1 has a reasonable
condition number. Often, when A is ill conditioned and indefinite, the matrix LU may be much
worse conditioned than A itself. As the factorization becomes more accurate, the likelihood of
obtaining an unstable factorization seems to increase. A useful estimate of the condition
number of (LU)−1 is (LU)−1e�, where e is a vector of all ones.

An approach that was used for matrices that have highly ill-conditioned factors was to give
special treatment to entries close to the diagonal, to enhance their contribution to the ILU
factors. The matrices from CFD applications often have a banded non-zero structure, with a
diagonal band, and typically one or two bands above and below the diagonal. A way to
decrease the condition number for such matrices is to only consider entries in the diagonal
bend when calculating the ILU preconditioner, or to only consider entries within diagonal
blocks, small enough to exclude contributions from off-diagonal bands, this is equivalent to
block diagonal preconditioning. These approaches were found to work best in one case (matrix
BBMAT). Another approach is to increase diagonal dominance by increasing the absolute
value of the diagonal elements, or by perturbing the diagonal blocks. Perturbation of diagonal
blocks was found to be effective for the matrix WIGTO966.

As is known, point and block factorizations based on level-of-fill are identical if zero entries
in blocks are filled in. This is confirmed by the experiments. The point and block precondi-
tioners based on threshold calculate fill-in pattern as the factorization progresses, by dropping
entries or blocks with small magnitude, and limiting the number of entries or blocks per row
in the ILU factors. It was found that the block version of threshold preconditioning has better
convergence that the point version in general. This may be due to the coupling between entries
within a block, making it better to drop or keep complete blocks rather than individual entries.

The block preconditioners for both level-of-fill and threshold have a leaner data structure
and require less storage for index arrays than the point versions. Calculating the block
structure requires less computational effort then calculating the point structure, because there
are less blocks in the matrix than entries. The block preconditioners are usually faster, but this
depends on the speed-up obtained from performing block row operations rather than row
operations versus the extra time taken inverting diagonal blocks.

ACKNOWLEDGMENTS

The Minnesota Supercomputer Institute has provided computer facilities and an excellent research
environment to conduct this research. The authors would like to thank Tim Barth for supplying some of
the matrices used in this work, and Edmond Chow and Kesheng Wu for useful comments and discussion

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788



A. CHAPMAN, Y. SAAD, AND L. WIGTON788

during this work. This work was supported by NASA under Grant NAG2-904 and by NSF under grant
number CCR-9214116.

REFERENCES

1. Saad Y. Iterati6e Methods for Sparse Linear Systems. PWS Publishing: New York, 1996.
2. Meijerink JA, van der Vorst HA. An iterative solution method for linear systems of which the coefficient matrix

is symmetric M-matrix. Mathematics of Computations 1977; 31(137): 148–162.
3. Watts III JW. A conjugate gradient truncated direct method for the iterative solution of the reservoir simulation

pressure equation. Society of Petroleum Engineer Journal 1981; 21: 345–353.
4. Saad Y. A dual threshold incomplete LU factorization. Numerical Linear Algebra with Applications 1994; 1:

387–402.
5. Dutto LC. The effect of recording on the preconditioned GMRES algorithm for solving the compressible

Navier–Stokes equations. International Journal for Numerical Methods in Engineering 1993; 36: 457–497.
6. Chow E, Saad Y. Approximate inverse preconditioners via sparse-sparse iterations. SIAM Journal of Science in

Computers 1998; 19: 995–1023.
7. Chow E, Saad Y. Experimental study of ILU preconditioners for indefinite matrices. Journal of Computational and

Applied Mathematics 1997; 87: 387–414.
8. Chow E, Heroux M. An object oriented framework for block preconditioning. ACM Transactions on Mathemat-

ical Software 1998; 24: 159–183.
9. Saad Y, Wu K. DQGMRES—A direct quasi-minimal residual algorithm based on incomplete orthogonalization.

Numerical Linear Algebra with Applications 1996; 3: 329–343.
10. Morgan RB. A restarted GMRES method augmented with eigenvectors. SIAM Journal of Matrix Analysis and

Applications 1996; 16: 1154–1171.
11. Chapman A, Saad Y. Deflated and augmented Krylov subspace techniques. Numerical Linear Algebra with

Applications 1997; 4: 43–66.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 767–788


